
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 283 (2005) 723–748
0022-460X/$ -

doi:10.1016/j.

�Tel.: +1-6

E-mail add
www.elsevier.com/locate/jsvi
The mapping dynamics of periodic motions for a three-
piecewise linear system under a periodic excitation

Albert C.J. Luo�

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville,

IL 62026-1805, USA

Received 1 August 2003; accepted 11 May 2004

Available online 11 November 2004
Abstract

In this paper, the mapping dynamics of periodic motions for a three-piecewise linear system
under a periodic excitation is developed, and the mapping structures for specified periodic
motions are constructed. Based on the mapping structures, an analytical prediction of all possible,
stable and unstable periodic motions is given. The symmetry for the stable, asymmetrical, periodic motions
of such a system is observed. However, the unstable periodic motions do not have such symmetry. The
methodology presented in this paper is applicable to other non-smooth systems such as friction-induced
vibration, impact oscillator and power control systems. In addition, the mapping dynamics provides a
useful and efficient tool for the co-existence of periodic motions and/or chaotic motions in nonlinear
dynamical systems.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The mapping dynamics of periodic motions for any dynamical system is to develop the
mapping relationships from which the expected periodic motions can be analytically predicted.
This investigation will avoid passive digital simulations of dynamics responses in nonlinear
dynamical systems, and also this investigation will provide a possibility to obtain all stable and
see front matter r 2004 Elsevier Ltd. All rights reserved.
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unstable periodic motions existing in dynamical systems rather than only one of stable
motions given by numerical simulations. The mapping dynamics herein will provide a useful and
efficient tool for us to determine the co-existence of periodic motions and/or chaos. The mapping
has been extensively used for investigation of complicated motions in nonlinear systems since
Poincaré [1] introduced the mapping concept for determination of periodic responses in nonlinear
dynamics. Such a mapping is termed the Poincaré mapping. The mapping sets accompanying the
Poincaré mapping is termed the Poincaré mapping section or surface. For an N-dimensional
autonomous system, the Poincaré mapping section is selected as an ðN � 1Þ-dimensional surface
transversal to the closed orbit. When a periodically driven, N-dimensional continuous system is
investigated, the Poincaré mapping section is often constructed by an N-dimensional set of
responses in phase space. However, for a periodically driven, N-dimensional discontinuous system,
discontinuous surfaces are a candidate of the Poincaré mapping section. In beginning of the last
century, one used the Poincaré mapping method for periodic motion and stability [2,3]. Since the
middle of last century, the Poincaré mapping has been used to demonstrate chaotic motions (e.g.,
Refs. [4,5]).

In 1983, Shaw and Holmes [6] investigated a piecewise linear system with a single discontinuity
through the Poincaré mapping and numerically predicted chaotic motion. In 1991, Nordmark [7]
used the mapping technique to investigate non-periodic motion caused by the grazing bifurcation.
In 1992 Kleczka et al. [8] investigated the periodic motion and bifurcations of piecewise linear
oscillator motion, and numerically observed the grazing motion. Foale [9] used Nordmark’s idea
about the grazing bifurcation to analytically determine the bifurcation in the impact oscillator in
1994. To determine complex periodic motions, in 1995 Luo [10] initialized the concept of mapping
dynamics for discontinuous systems and applied it to impacting oscillators and a ball bouncing on
a vibrating table (also see Refs. [11,12]). In 2002, Luo [13] discovered the two asymmetric period-1
motions by introduction of a time interval between two impacts, and one of the two asymmetric
motions for such an impact system were observed through a numerical investigation in Ref. [14].
In 2003, Menon and Luo [15] used the concept of mapping dynamics to construct mapping
structures of a piecewise linear system with a dead-zone restoring force. In addition, without the
mapping techniques, the following contributions to the piecewise linear system problem should be
mentioned. The early study of a piecewise linear system without damping was completed by
Hartog and Mikina [16] in 1932 and a closed-form solution for symmetric and periodic motion
was obtained. Timoshenko [17] discussed undamped piecewise linear systems in 1937. In 1989,
Natsiavas [18] identified the responses of a system with tri-linear springs with a time-incremental
method, and by use of a similar approach, the dynamics of oscillators with strongly nonlinear
asymmetric damping was investigated [19]. In 2000, Theodossiades and Natsiavas [20] discussed
the modeling of gear-pair vibration as a piecewise linear problem, and the periodic solutions and
stability for such a system were discussed.

In this paper, the mapping dynamics of periodic motion will be investigated for a
better understanding of the complex periodic motions in a three-piecewise linear system
under a periodic excitation, and mapping structures for specified periodic motions will be
developed. An analytical prediction of all possible, stable and unstable periodic motions will be
given from those mapping structures. The local stability and bifurcation will be obtained through
eigenvalue analysis. Numerical simulations are presented for demonstration of the symmetry of
periodic motions.
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2. Switching sets and generic mappings

Consider a periodically excited, piecewise linear system

€x þ 2d _x þ kðxÞ ¼ a cosOt; (1)

where _x ¼ dx=dt: The parameters O and a are excitation frequency and amplitude, respectively.
The restoring force is

kðxÞ ¼

cx � e for xXE;

0 for � EpxpE;

cx þ e for xp� E;

8><
>: (2)

with E ¼ e=c: In the foregoing system, there are three linear regions of the restoring force (Region
I: xXE; Region II: �EpxpE and Region III: xp� E). The solution for each region can be
easily obtained, as listed in Appendix A.

For description of motion in Eq. (1), two switching sections (or sets) are defined as

Sþ ¼ fðti;xi; yiÞjxi ¼ E; _xi ¼ yig and S� ¼ fðti;xi; yiÞjxi ¼ �E; _xi ¼ yig: (3)

The two sets are decomposed into

Sþ ¼ Sþ
þ [ Sþ

� [ fti;E; 0g and S� ¼ S�
þ [ S�

� [ fti;�E; 0g; (4)

where four subsets are defined as

Sþ
þ ¼ fðti;xi; yiÞjxi ¼ E; _xi ¼ yi40g and Sþ

� ¼ fðti; xi; yiÞjxi ¼ E; _xi ¼ yio0g; (5)

S�
þ ¼ fðti;xi; yiÞjxi ¼ �E; _xi ¼ yi40g and S�

� ¼ fðti; xi; yiÞjxi ¼ �E; _xi ¼ yio0g: (6)

The points fti;E; 0g and fti;�E; 0g strongly dependent on the external force direction are singular.
From four subsets, six basic mappings are

P1 : Sþ
þ ! Sþ

�; P2 : Sþ
� ! S�

�; P3 : S�
� ! S�

þ;

P4 : S�
þ ! Sþ

þ; P5 : Sþ
� ! Sþ

þ; P6 : S�
þ ! S�

�: ð7Þ

In Fig. 1, the switching planes and basic mappings are sketched. The mapping P1 : ðti;E; yiÞ !

ðtiþ1;E; yiþ1Þ indicates that the initial and final states are ðt;x; _xÞinitial ¼ ðti;E; yiÞ and ðt; x; _xÞfinal ¼
ðtiþ1;E; yiþ1Þ in Region I, respectively. For yi40 and yiþ1o0; two governing equations for
mapping P1 are obtained from Eqs. (A.2) and (A.3) with xi ¼ E; i.e.,

½C1ðtiÞ cosoðtiþ1 � tiÞ þ C2ðti; yiÞ sinoðtiþ1 � tiÞ�e
�dðtiþ1�tiÞ þ aðD1 cosOtiþ1 þ D2 sinOtiþ1Þ ¼ 0;

yiþ1 þ f½C1ðtiÞd � C2ðti; yiÞo� cosoðtiþ1 � tiÞ þ ½C1ðtiÞoþ C2ðti; yiÞd� sinoðtiþ1 � tiÞge
�dðtiþ1�tiÞ

þ aOðD1 sinOtiþ1 � D2 cosOtiþ1Þ ¼ 0: ð8Þ
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Similarly, the mapping P2 : ðti;E; yiÞ ! ðtiþ1;�E; yiþ1Þ gives the initial and final states ðti;E; yiÞ

and ðtiþ1;�E; yiþ1Þ in Region II, respectively. The corresponding governing equations for the
mapping P2 are obtained from Eqs. (A.7) and (A.8) plus xi ¼ E for yio0 and yiþ1o0; i.e.,

C3ðti; yiÞe
�2dðtiþ1�tiÞ þ C4ðti; yiÞ þ aðD3 cosOtiþ1 þ D4 sinOtiþ1Þ þ 2E ¼ 0;

yiþ1 þ 2dC3ðti; yiÞe
�2dðtiþ1�tiÞ þ aOðD3 sinOtiþ1 � D4 cosOtiþ1Þ ¼ 0: ð9Þ

The motion of the system enters Region III after time ti; and returns back to the boundary of
Regions II and III until time tiþ1: Such a motion is measured through the mapping P3: Note that for
yio0 and yiþ140; Eqs. (A.2) and (A.3) with xi ¼ �E give the governing equations as in Eq. (8).

The mapping P4 brings the motion from the boundary of Regions III and II at time ti

to the boundary of Regions II and I at time tiþ1: The governing equations for such a mapping
are determined by Eqs. (A.7) and (A.8) with ðti;�E; yiÞ and ðtiþ1;E; yiþ1Þ for yi40 and
yiþ140; i.e.,

C3ðti; yiÞe
�2dðtiþ1�tiÞ þ C4ðti; yiÞ þ aðD3 cosOtiþ1 þ D4 sinOtiþ1Þ � 2E ¼ 0;

yiþ1 þ 2dC3ðti; yiÞe
�2dðtiþ1�tiÞ þ aOðD3 sinOtiþ1 � D4 cosOtiþ1Þ ¼ 0: ð10Þ

The mapping P5 brings the motion from the boundary of Regions I and II to the boundary of
Regions I and II at time tiþ1: The governing equations for such a mapping are determined by Eqs.
(A.7) and (A.8) with ðti;E; yiÞ and ðtiþ1;E; yiþ1Þ for yio0 and yiþ140; i.e.,

C3ðti; yiÞe
�2dðtiþ1�tiÞ þ C4ðti; yiÞ þ aðD3 cosOtiþ1 þ D4 sinOtiþ1Þ ¼ 0;

yiþ1 þ 2dC3ðti; yiÞe
�2dðtiþ1�tiÞ þ aOðD3 sinOtiþ1 � D4 cosOtiþ1Þ ¼ 0: ð11Þ

The mapping P6 maps the motion from the boundary of Regions II and III to the boundary of
Regions II and III at time tiþ1: The governing equations for such a mapping are the same as in
Eq. (11) with yi40 and yiþ1o0: From the above mapping definitions, mappings P1;P3;P5 and P6

are termed the local mapping, and mappings P2 and P4 are termed the global mapping (or the
transfer mapping).
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3. Mapping structures

For simplicity, the following notation for mapping is introduced:

Pn1n2nk
� Pn1

� Pn2
�    � Pnk

; (12)

where Pni
2 fPjj j ¼ 1; 2; . . . ; 6g and ni ¼ f1; 2; . . . ; 6g: Note that the rotation of the mapping of

periodic motion in order gives the same motion (i.e., Pn1n2nk
;Pn2nkn1

; . . . ;Pnkn1nk�1
Þ; and only the

selected Poincaré mapping section is different. The motion of the m-time repeating of mapping
Pn1n2nk

is defined as

Pm
n1n2nk

� Pðn1n2nkÞ
m � Pðn1n2    nkÞ    ðn1n2    nkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m

� ðPn1
� Pn2

�    � Pnk
Þ �    � ðPn1

� Pn2
�    � Pnk

Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m-sets

: ð13Þ

To extend this concept to the local mapping, define

Pm
15 � Pð15Þm � ðP1 � P5Þ �    � ðP1 � P5Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m-sets

and Pm
36 � Pð36Þm � ðP3 � P6Þ �    � ðP3 � P6Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m-sets

: (14)

For the special combination of global and local mapping, introduce a mapping structure

Pn1n2ðninl Þ
m
nk

� Pn1
� Pn2

�    � Pm
ninl

�    � Pnk

¼ Pn1
� Pn2

�    � ðPni
� Pnl

Þ �    � ðPni
� Pnl

Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m-sets

�    � Pnk
: ð15Þ

From the definition, the motion of Eq. (1) can be very easily labeled through the mapping
structure accordingly.

3.1. Local periodic motion

Since there are two displacement constraints, there are many possible periodic
motion models. Consider local periodic motions near two displacement constraints
first, namely, no transfer mapping is used to map the switching planes from one to
another. To construct the Poincaré mapping for the motion from Sþ

þ to Sþ
þ; the

commutative diagram for period-1 and period-k motion is illustrated in Figs. 2(a)
and (b), respectively. The corresponding physical motions near the displacement
constraint at x ¼ E are presented in Figs. 2(c) and (d). From the mapping commutative diagram,
the period-1 and period-k motions possess the Poincaré mapping P : Sþ

þ ! Sþ
þ with the following

mapping relations:

(16)
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Fig. 2. Local periodic motion near the displacement at x ¼ E: mapping commutative diagrams for (a) period-1 motion

and (b) period-k motion; physical motion for (c) period-1 motion and (d) period-k motion.
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where P � P51 and P � Pk
51: Once the period-1 motion has period doubling, the integer k becomes

2. Therefore, the second equation in Eq. (16) includes all possible periodic motion for the different
integer k. Similarly, if the switch plane Sþ

� is chosen as the Poincaré mapping section, the Poincaré
mapping P : Sþ

� ! Sþ
� becomes

(17)

In a similar manner, the Poincaré mapping for the periodic motion near the displacement constant
x ¼ �E is defined as P36 : S�

� ! S�
� or P63 : S�

� ! S�
�: For such a Poincaré mapping, the

mapping commutative diagram and physical motion in phase planes are presented in Fig. 3. The
Poincaré mapping is given by

(18)

or

(19)

The local periodic motion can be determined through these mapping relationships.
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motion and (b) period-k motion; physical motion for (c) period-1 motion and (d) period-k motion.
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3.2. Global periodic motion

The global periodic motion is the motion that passes through the two displacement constraints.
With varying system parameters, the motion described by P5 and P6 will convert to the motion
determined by P2 and P4: The local periodic motion becomes a global motion through a grazing
bifurcation or catastrophe with the Jacobian matrix singularity, and the global motion connects
the two displacement constraints. Consider the simplest global periodic motion with a Poincaré
mapping P4321 : Sþ

þ ! Sþ
þ; and the mapping commutative diagram and physical model is given in

Fig. 4. The Poincaré mapping is expressed by

P4321 ¼ P4 � P3 � P2 � P1: (20)

Once the period doubling of periodic motion in Eq. (20) occurs, the Poincaré mapping for period-
2k motion becomes

(21)

For the generalized Poincaré mapping for any period-k motion of mapping P4321; we have

(22)
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Fig. 4. The simplest global periodic motion: mapping commutative diagrams for (a) period-1 motion and (b) period-k

motion; physical motion for (c) period-1 motion and (d) period-k motion.
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3.3. Mixed periodic motion

The global periodic motion is not always symmetric, and with changing system parameters, the
aforementioned local motions will be involved in the asymmetric, global motion to form a new
periodic motion that is termed the mixed periodic motion. Therefore, the mixed periodic motion is
combined with the local and global motions. Two basic models for such a mixed motion are
presented through P : Sþ

þ ! Sþ
þ; as shown in Fig. 5. The mapping structures for the simplest

mixed periodic motion is expressed by

(23)

The two mixed motions are directly caused by the two different asymmetric motions of the global
motion in Eq. (20). For the motion generated by the period-doubling bifurcation of mapping in
Eq. (23), the mapping structures are the same as in Eq. (21). Namely, we have P2k

432ð15Þ1 ¼

P432ð15Þ1 �    � P432ð15Þ1 and P2k

4ð36Þ321 ¼ P4ð36Þ321 �    � P4ð36Þ321: Similarly, if the grazing or
catastrophe with Jacobian matrix singularity exists, a new, mixed periodic motion will be
generated from the two asymmetrical motions determined by mappings P432ð15Þ1 and P4ð36Þ321 in
Eq. (23). The mapping structure of the new periodic motion is described by

(24)

which is illustrated in Fig. 6.
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Fig. 6. The global periodic motion with two local cyclic motions: (a) mapping commutative diagram and (b) physical

motion.

Fig. 5. The two asymmetric, global periodic motion: mapping commutative diagrams for (a) right- and (b) left-

asymmetrical motions; physical motion for (c) right- and (d) left-asymmetrical motions.
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To generalize the above symmetrical and asymmetrical periodic motions, we have

(25)
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Fig. 7. A global periodic motion with k2-cycle (left) and k1-cycle (right) local motions: (a) mapping commutative

diagram and (b) physical motion.
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As k1 ¼ k2; the foregoing mapping gives the motion possessing a symmetrical mapping. For
k1ak2; the motion having an asymmetrical mapping structure is obtained. The motion transition
between the symmetrical and asymmetrical mappings, caused by grazing, will not be discussed
herein, but the corresponding results will be presented in another paper. The mapping structure
for Eq. (25) is presented in Fig. 7. The further generalized mapping structure for the complex,
periodic motion is expressed by

(26)
4. Stability and bifurcation

The periodic motion can be obtained through a specific Poincaré mapping given by one of the
combined mappings developed in the previous section. In other words, the period-1 motion is
determined by the fixed point of the Poincaré mapping for a given period T ¼ 2p=O (i.e.,

mathematically, P4ð36Þk2n32ð15Þk1n14ð36Þk2132ð15Þk111xi ¼ x
iþ4nþ

Pn

m¼1
ðk2mþk1mÞ

; where xi ¼ ðti; yiÞ
T
Þ: Once

the initial condition ðt�i ;E; y�
i Þ for the periodic motion is obtained, the switching times and

velocities for all the switching planes are determined accordingly. The stability and bifurcation for
period-1 motion can be determined through the corresponding Jacobian matrix of the Poincaré
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mapping. From Eq. (26), the Jacobian matrix is computed by the chain rule, i.e.,

(27)

From mappings in Section 2, two unknowns ðtiþ1; yiþ1Þ can be expressed through the initial

conditions, i.e., tiþ1 ¼ tiþ1ðti; yiÞ and yiþ1 ¼ yiþ1ðti; yiÞ: The linearization of mappings P1 and P3 in

the neighborhood of the solution of periodic motion ðt�i ; y
�
i Þ generates the Jacobian matrices:

DPj ¼
qðtiþ1; yiþ1Þ

qðti; yiÞ

� �
ðt�

i
;y�

i
;t�

iþ1
;y�

iþ1
Þ

¼
e�dðtiþ1�tiÞ

yiþ1o

yio cosoðtiþ1 � tiÞ þ Ni sinoðtiþ1 � tiÞ � sinoðtiþ1 � tiÞ

oðyiNiþ1 � yiþ1NiÞ cosoðtiþ1 � tiÞ oyiþ1 cosoðtiþ1 � tiÞ

þðNiþ1Ni þ o2yiyiþ1Þ sinoðtiþ1 � tiÞ �Niþ1 sinoðtiþ1 � tiÞ

2
664

3
775
ðt�

i
;y�

i
;t�

iþ1
;y�

iþ1
Þ

ð28Þ

The linearization of mappings P2;P4;P5 and P6 in the neighborhood of ðt�i ; y
�
i Þ generates the

Jacobian matrices for

DPj ¼
qðtiþ1; yiþ1Þ

qðti; yiÞ

� �
ðt�

i
;y�

i
;t�

iþ1
;y�

iþ1
Þ

¼
e�2dðtiþ1�tiÞ

2yiþ1d

�
2dyi þ a cosOtiðe

2dðtiþ1�tiÞ � 1Þ 1� e2dðtiþ1�tiÞ

e2dðtiþ1�tiÞPiþ1a cosOtiþ1 � Pia cosOtiþ1 a cosOtiþ1 � Piþ1e
2dðtiþ1�tiÞ

" #
ðt�

i
;y�

i
;t�

iþ1
;y�

iþ1
Þ

; ð29Þ

where

Ni ¼ a cosðOtiÞ � dyi and Pi ¼ a cosðOtiÞ � 2dyi: (30)

The eigenvalues of a fixed point for the periodic motion mapping is expressed through the trace
(Tr(DP)) and determinant (Det(DP)) of the Jacobian matrix DP; i.e.,

l1;2 ¼
TrðDPÞ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TrðDPÞ�2 � 4DetðDPÞ

p
2

: (31)
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If ½TrðDPÞ�2o4DetðDPÞ; Eq. (31) is expressed by

l1;2 ¼ ReðlÞ � j ImðlÞ; with j ¼
ffiffiffiffiffiffiffi
�1

p
; (32)

where ReðlÞ ¼ TrðDPÞ=2; and ImðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DetðDPÞ � ½TrðDPÞ�2

p
=2:

If two eigenvalues lie inside the unit circle, then the period-1 motion pertaining to
the fixed point of the Poincaré mapping is stable, while if one of them lies outside
the unit circle, the periodic motion is unstable. Namely, the stable periodic motion requires the
eigenvalues to be

jlijo1; i ¼ 1; 2: (33)

When this condition is not satisfied, the periodic motion is unstable. For complex eigenvalues
jl1;2jo1; the periodic motion is a stable focus, while for jl1;2j41 the periodic motion becomes an
unstable focus. If jl1 or 2j ¼ 1 with complex numbers, namely,

DetðDPÞ ¼ 1; (34)

the Neimark bifurcation occurs. For two eigenvalues being real, the stable-node periodic motion
requires max jlijo1; i ¼ 1; 2 and the unstable node (or saddle) one requires jlij41; i ¼ 1 or 2.
The saddle-node of the first kind is as li41; i ¼ 1 or 2, and the saddle-node of the second kind
needs lio� 1; i ¼ 1 or 2. If one of the two eigenvalues is �1 (i.e., l1ðor 2Þ ¼ �1) and the other one
is inside the unit cycle, the period-doubling bifurcation occurs. Further, the period-doubling
bifurcation condition is

TrðDPÞ þDetðDPÞ þ 1 ¼ 0: (35)

If one of the two eigenvalues is +1 (i.e., l1ðor 2Þ ¼ þ1) and the second one is inside the unit cycle,
the first saddle-node bifurcation occurs. Similarly, the corresponding bifurcation condition is

DetðDPÞ þ 1 ¼ TrðDPÞ: (36)

For the grazing of periodic motion, one of the eigenvalues becomes infinity since the Jacobian
matrix is singular.
5. Illustrations

From mapping structures of periodic motions, the switching sets for a specific regular
motion can be determined through solving a set of nonlinear equations. For instance,
for a periodic motion with a mapping structure P4ð36Þk2n32ð15Þk1n14ð36Þk2132ð15Þk111

(i.e., P4ð36Þk2n32ð15Þk1n14ð36Þk2132ð15Þk111x ¼ x), a set of vector equations is as

fð1Þðxiþ1;xiÞ ¼ 0;

fð5Þðxiþ2;xiþ1Þ ¼ 0;

..

.

fð4Þ x
iþ4nþ2

Pn

m¼1
ðk1mþk2mÞ

;x
iþ4nþ2

Pn

m¼1
ðk1mþk2mÞ�1

� �
¼ 0; ð37Þ
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where fðnjÞ ¼ ð f
ðnjÞ

1 ; f
ðnjÞ

2 Þ
T is relative to the governing equations of mapping Pnj

ðni 2 f1; 2; . . . ; 6gÞ
and xi ¼ ðti; _xiÞ

T
� ðti; yiÞ

T: For the period-1 motion per N-periods, the periodicity condition
requires

x
iþ4nþ2

Pn

m¼1
ðk1mþk2mÞ

¼ xi or t
iþ4nþ2

Pn

m¼1
ðk1mþk2mÞ

; y
iþ4nþ2

Pn

m¼1
ðk1mþk2mÞ

� �T

� ti þ
2Np
O

; yi

� �T

:

(38)

Solving Eqs. (37) and (38) generates the switching sets for periodic motion.
Since the spring constant is zero in Region II, the local periodic motion near the switching

planes cannot be obtained. Therefore, consider a periodic motion relative to mapping P4321 first
and a set of system parameters ðd ¼ 0:5; c ¼ 100;E ¼ 1:0; a ¼ 20;N ¼ 1Þ is used, and these system
parameters will be used for all numerical illustrations. The switching phases and velocities varying
with excitation frequency are illustrated in Fig. 8. The circular symbols denote bifurcation points.
The thin and thick solid curves represent the stable symmetrical and asymmetric motions,
respectively. The dashed and dash–dot curves denote the unstable symmetrical and asymmetrical
motions. The switching phases and velocities for the entire range of excitation frequency are
plotted in Figs. 8(a) and (b). The complicated parts of the solutions for switching phases and
velocities are zoomed in Figs. 8(c) and (d). The local stability conditions are determined through
the eigenvalues of the Jocabian matrix in Eq. (27), as shown in Fig. 9. The disappearance grazing
of the symmetric motion occurs at Ocr1ðsÞ � 7:39 and Ocr4ðsÞ � 0:23: In the range of O 2 ð3:38; 7:34Þ;
the solution of symmetric period-1 motion is stable. For O 2 ð7:34; 7:39Þ and O 2 ð0:23; 3:38Þ; the
symmetrical period-1 motion is unstable. At Ocr2ðsÞ � 7:34 and Ocr3ðsÞ � 3:38; the saddle
bifurcation of the first kind occurs for the symmetrical period-1 motion. In the range of O 2

ð0:23; 3:30Þ; two asymmetrical period-1 motions exist. At Ocr1ðaÞ � 3:30; the solutions for
symmetrical and asymmetrical motions merge together. The stable, asymmetrical motion is in
O 2 ð2:98; 3:22Þ: The unstable solutions for the two asymmetrical period-1 motions are in O 2

ð0:24; 2:98Þ and O 2 ð3:22; 3:30Þ: At Ocr2ðaÞ � 3:234; the saddle-node bifurcation of the first kind
occurs when the asymmetrical period-1 motion takes place. Furthermore, the period-doubling
bifurcation of the asymmetrical period-1 motion occurs at excitation frequency Ocr3ðaÞ � 2:98:
Note that subscripts ‘‘a’’ and ‘‘s’’ denote the asymmetrical and symmetrical motions.

During grazing of the two asymmetric motions of P4321; the motion with the symmetrical
mapping structures switches into the right- and left-asymmetrical motions related to mappings
P432ð15Þ1 and P4ð36Þ321; respectively. The mapping structures are qualitatively described in Fig. 5.
The switching phases and velocities varying with excitation frequency for the two motions are
plotted with parameters ðd ¼ 0:5; c ¼ 100;E ¼ 1:0; a ¼ 20;N ¼ 1Þ; as shown in Fig. 10. The
circular symbols denote bifurcation points. The thin and thick solid curves represent the stable
motions for mappings P432ð15Þ1 and P4ð36Þ321; respectively. The dashed and dash–dot curves denote
the corresponding, unstable motions. The stability conditions are presented through the
eigenvalue analysis, as illustrated in Fig. 11. For the two motions, one of the two eigenvalues
approaches infinity at Ocr1 � 2:863 and Ocr4 � 1:529: It indicates that no motion relative to the
two mappings exists for OoOcr4 and O4Ocr1: The disappearance grazing of the two motions
occurs at Ocr1 � 2:863 and Ocr4 � 2:863: At Ocr2 � 2:858; the saddle-node bifurcation of the first
kind occurs. For excitation frequency O 2 ð2:858; 2:863Þ; the unstable motion is the saddle node of
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Fig. 8. Switching phases and velocities varying with excitation frequency for periodic motion pertaining to mapping

P4321: (a) switching phases and (b) switching velocities; (c) zoomed switching phases and (d) zoomed switching

velocities. The circular symbols denote bifurcation points; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200; ———, stable

symmetric; ; stable asymmetric; – – –, unstable symmetric; –  –  –, unstable asymmetric.
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the first kind, and the stable motion is in O 2 ð2:766; 2:858Þ: At Ocr3 � 2:766; the period-doubling
bifurcation (or the saddle node of the second kind) happens. For an excitation frequency near the
period-doubling bifurcation point ðOoOcr3Þ;motions of mapping P432ð15Þ1 � P432ð15Þ1 and P4ð36Þ321 �

P4ð36Þ321 can be obtained. The unstable motions of mappings P432ð15Þ1 and P4ð36Þ321 are the saddle
nodes of the second kind in the range O 2 ð1:592; 2:766Þ: Once the gazing of P432ð15Þ1 and P4ð36Þ321

takes place, the motion of P4ð36Þ32ð15Þ1 appears, as described qualitatively in Fig. 6. The mapping
structure for this motion is symmetrical. Thus, the symmetrical and asymmetrical motions for
such a mapping structure exist.

The switching phases and velocities of the motion of P4ð36Þ32ð15Þ1 for the entire range of
excitation frequency are plotted in Fig. 12. The lines and symbols have meanings similar to the
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Fig. 9. Eigenvalues for periodic motion relative to mapping P4321: (a) real parts and (b) imaginary parts; (c) absolute

values and (d) complex plane. The hollow and solid circular symbols denote symmetrical and asymmetrical periodic

motions; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200:
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ones in Fig. 8. The corresponding eigenvalue analysis for the motions are presented in Fig. 13 for
local stability and bifurcation conditions. The solution structure for this motion is similar
to the motion of P4321: For the symmetrical motion of P4ð36Þ32ð15Þ1; the critical values for
disappearance gazing are Ocr1ðsÞ � 1:889 and Ocr4ðsÞ � 0:176: The saddle-node bifurcation points of
the first kind are Ocr2ðsÞ � 1:88 and Ocr3ðsÞ � 1:706: For the asymmetrical motion of P4ð36Þ32ð15Þ1; the
critical values for the disappearance grazing are Ocr1ðaÞ � 1:65 and Ocr4ðaÞ � 0:788; and the saddle-
node bifurcation points of the first and second kinds are Ocr2ðaÞ � 1:614 and Ocr3ðaÞ � 1:592;
respectively.

To demonstrate how to determine motions relative to a complicated mapping structure, the
motion of mapping P4ð36Þ232ð15Þ21 is presented in Fig. 14 with the same parameter as above. The
lines and symbols have meanings similar to the ones in Fig. 8. Similarly, for the symmetrical
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Fig. 10. Switching phases and velocities varying with excitation frequency for periodic motions pertaining to mapping

P4ð36Þ321 and P432ð15Þ1: (a) switching phases and (b) switching velocities; (c) zoomed switching phases and (d) zoomed

switching velocities. The circular symbols denote bifurcation points; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200; ———,

stable P432ð15Þ1; ; stable P4ð36Þ321; – – –, unstable P4ð36Þ321; –  –  –, unstable P432ð15Þ1:
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motion of P4ð36Þ232ð15Þ21; the critical values for disappearance gazing are Ocr1ðsÞ � 1:231 and Ocr4ðsÞ �

0:129: The saddle-node bifurcation points of the first kind are Ocr2ðsÞ � 1:228 and Ocr3ðsÞ � 1:181:
For the two asymmetrical motions of P4ð36Þ232ð15Þ21; the critical values for the disappearance
grazing are Ocr1ðaÞ � 1:135 and Ocr4ðaÞ � 0:753; and the saddle-node bifurcation points of the first
and second kinds are Ocr2ðaÞ � 1:117 and Ocr3ðaÞ � 1:113; respectively.

From the above illustrations of periodic motion with mapping P4ð36Þm32ð15Þm1; the solutions for
the two asymmetric motions have the following relations:

jmodðOtI
iþj; 2pÞ �modðOtII

iþmodð2mþ2þj;4mþ4Þ; 2pÞj ¼ p;

yI
iþj ¼ �yII

iþmodð2mþ2þj;4mþ4Þ; for j ¼ f0; 1; . . . ; 4m þ 3g; ð39Þ
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Fig. 11. Eigenvalues for periodic motions relative to mapping P4ð36Þ321 and P432ð15Þ1: (a) real parts and (b) imaginary

parts; (c) absolute values and (d) complex plane. The hollow and solid circular symbols denote symmetrical and

asymmetrical periodic motions; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200:
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where modð�; �Þ is the modulus function. For the periodic motion of mapping P4ð36Þmþ132ð15Þm1 ¼ PI

and P4ð36Þm32ð15Þmþ11 ¼ PII ; the solution relationship becomes

jmodðOtI
iþj; 2pÞ �modðOtII

iþmodð2mþ4þj;4mþ6Þ; 2pÞj ¼ p;

yI
iþj ¼ �yII

iþmodð2mþ4þj;4mþ6Þ; for j ¼ f0; 1; . . . ; 4m þ 5g; ð40Þ

or

jmodðOtII
iþj; 2pÞ �modðOtI

iþmodð2mþ2þj;4mþ6Þ; 2pÞj ¼ p;

yI
iþj ¼ �yII

iþmodð2mþ2þj;4mþ6Þ; for j ¼ f0; 1; . . . ; 4m þ 5g: ð41Þ
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Fig. 12. Switching phases and velocities varying with excitation frequency for periodic motion pertaining to mapping

P4ð36Þ32ð15Þ1: (a) switching phases and (b) switching velocities; (c) zoomed switching phases and (d) zoomed switching

velocities. The circular symbols denote bifurcation points; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200; ———, stable

symmetric; ; stable asymmetric; – – –, unstable symmetric; –  –  –, unstable asymmetric.
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6. Numerical simulations

From mapping structures, the switching velocity and phases at switching planes are
determined. The symmetrical structures of solutions are observed, as summarized
in Eqs. (39)–(41). The motions can be simulated numerically through the differential
equation (1) with appropriate initial conditions selected from the switching sets
determined analytically for this problem, since the analytical expressions of solution
for motions in each region are developed. The numerical simulation can be carried
out by use of those analytical expressions. Herein, numerical simulations are based
on Eqs. (A.2)–(A.6) for the switching planes at ðyi40;xi ¼ EÞ and ðyio0; xi ¼ �EÞ;
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Fig. 13. Eigenvalues for periodic motion relative to mapping P4ð36Þ32ð15Þ1: (a) real parts and (b) imaginary parts; (c)

absolute values and (d) complex plane. The hollow and solid circular symbols denote symmetrical and asymmetrical

periodic motions; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200:
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and Eqs. (A.8)–(A.12) for ðyio0;xi ¼ EÞ and ðyi40;xi ¼ �EÞ; respectively. The initial conditions
are selected from the switching plane ðti; yiÞ 2 Sþ

þ given analytically. For comparison, a set of
parameters ðA ¼ 10; C ¼ 50; E ¼ 1; D ¼ 0:5; M ¼ 0:5Þ is used again. The computation
precision at switching planes is 10�10: The input data for all numerical simulations are listed in
Table 1.

In Fig. 15, the motion relative to mapping P4321 is illustrated. The stable, symmetric, right-
asymmetric and left-asymmetric motions are arranged in Figs. 15(a)–(c), respectively. The shape
changes of motion in phase planes for such a symmetry are very clearly observed. The phase
trajectory in Fig. 15(b) turning 180� clockwise is identical to the phase trajectory in Fig. 15(c). The
two asymmetric motions are skew-symmetric, as in Eq. (39). In Figs. 15(d)–(f), the unstable
symmetric, right-asymmetric and left-asymmetric motions are presented. Once the symmetric
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Fig. 14. Switching phases and velocities varying with excitation frequency for periodic motion pertaining to mapping

P4ð36Þ2ð32Þð15Þ21: (a) switching phases and (b) switching velocities; (c) zoomed switching phases and (d) zoomed switching

velocities. The circular symbols denote bifurcation points; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200; ———, stable

symmetric; ; stable asymmetric; – – –, unstable symmetric; –  –  –, unstable asymmetric.
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motion loses its stability, the unstable motion may go to one of the closest, other stable motions or
chaotic motion, as shown in Fig. 15(d). For the unstable asymmetrical motion,
the skew-symmetry property cannot hold any more, which is observed from Figs. 15(e)
and (f). The phase trajectories for mappings P432ð15Þ1 and P4ð36Þ321 are illustrated in Fig. 16. For the
stable motions, the trajectories are skew-symmetric. The two solutions have a similar relation as in
Eqs. (40) and (41). However, the corresponding unstable motions destroy the skew-symmetry
existing in the stable motions. In Fig. 17, the stable, symmetric, right-asymmetric and left-
asymmetric motions for P4ð36Þ32ð15Þ1 and P4ð36Þ232ð15Þ21 are demonstrated in Figs. 17(a)–(c) and
(d)–(f), respectively, and the skew-symmetric structures for the asymmetrical motions are
observed.
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Table 1

Input data for numerical simulations ðd ¼ 0:5; c ¼ 100;E ¼ 1:0; a ¼ 20; x0 ¼ E;N ¼ 1Þ

O Ot0 y0 Mapping Symmetry Stability

Fig. 15 (a) 4.8 5.8782 7.5617 Symmetric Stable

(b) 3.2 5.6830 5.5475 R-asymmetric

(c) 3.2 6.2195 5.7207 P4321 L-asymmetric

(d) 2.5 6.0033 5.3625 Symmetric Unstable

(e) 2.5 5.3394 7.4599 R-asymmetric

(f) 2.5 5.3502 7.3412 L-asymmetric

Fig. 16 (a) 2.8 5.3225 4.6288 P432ð15Þ1 R-asymmetric Stable

(b) 2.8 6.2502 7.2810 P4ð36Þ321 L-asymmetric

(c) 2.0 5.9064 5.0923 P432ð15Þ1 R-asymmetric Unstable

(d) 2.0 6.0587 7.0792 P4ð36Þ321 L-asymmetric

Fig. 17 (a) 1.8 5.6161 5.1735 Symmetric Stable

(b) 1.6 5.5191 4.8633 P4ð36Þ32ð15Þ1 R-asymmetric

(c) 1.6 5.7805 5.4937 L-asymmetric

(d) 1.2 5.5008 4.8697 Symmetric

(e) 1.115 5.6017 5.2969 P4ð36Þ232ð15Þ21 R-asymmetric

(f) 1.115 5.4467 4.6830 L-asymmetric

Note that the letters ‘‘R’’ and ‘‘L’’ denote the right and left switching planes. R- (or L-) asymmetric is the asymmetric

motion near the right (or left) switching plane.
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7. Conclusion

In this paper, the mapping dynamics of periodic motions for a three-piecewise linear
system under a periodic excitation is developed, and the mapping structures for all the
possible periodic motions are developed. Based on the mapping structures, the analytical
prediction of stable and unstable periodic motions is given. No local periodic motion can be
obtained since the spring constant in Region II is equal to zero. The symmetry for the stable
asymmetrical periodic motions of such a system is observed. The methodology presented in this
paper is applicable to other non-smooth systems such as friction-induced vibration, impact
oscillator and power control systems.
Appendix A. Basic solutions

For Regions I and III, Eq. (1) becomes a linear equation of the form

€x þ 2d _x þ cx ¼ �e þ a cosOt: (A.1)
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Fig. 15. Phase planes for P4321 (a) symmetrical motion, O ¼ 4:8; Oti � 5:8782; yi � 7:5617; (b) asymmetrical motion;

O ¼ 3:2; Oti � 5:6830; yi ¼ 5:5475; (c) asymmetrical motion, O ¼ 3:2; Oti � 6:2195; yi � 5:7207; (d) unstable

symmetrical motion, O ¼ 2:5; Oti � 6:0033; yi � 5:3625; (e) unstable asymmetrical motion, O ¼ 2:5; Oti �

5:3394; yi � 7:4599; and (f) unstable asymmetrical motion, O ¼ 2:5; Oti � 5:3502; yi � 7:3412; d ¼ 0:5; c ¼ 100; E ¼

1:0; a ¼ 200:
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Fig. 16. Phase planes: (a) stable motion for P432ð15Þ1; O ¼ 2:8; Oti � 5:3225; yi � 4:6288; (b) stable motion for

P4ð36Þ321; O ¼ 2:8; Oti � 6:2502; yi � 7:2810; (c) unstable motion relative to P432ð15Þ1; O ¼ 2:0; Oti � 5:9064; yi �

5:0923; and (d) unstable motion relative to P4ð36Þ321; O ¼ 2:0; Oti � 6:0587; yi � 7:0792; d ¼ 0:5; c ¼ 100; E ¼

1:0; a ¼ 200:
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Assuming an initial condition ðt;x; _xÞ ¼ ðti; xi; yiÞ; the general solution of Eq. (A.1) is given by

xðtÞ ¼ ½C1ðtiÞ cosoðt � tiÞ þ C2ðtiÞ sinoðt � tiÞ�e
�dðt�tiÞ þ xi þ aðD1 cosOt þ D2 sinOtÞ; (A.2)

_xðtÞ ¼ f½C2ðtiÞo� C1ðtiÞd� cosoðt � tiÞ � ½C1ðtiÞoþ C2ðtiÞd� sinoðt � tiÞge
�dðt�tiÞ

� aOðD1 sinOt � D2 cosOtÞ; ðA:3Þ

where two constants C1ðtiÞ and C2ðtiÞ are determined by the initial condition, i.e.,

C1ðtiÞ ¼ �aðD1 sinOti þ D2 cosOtiÞ; (A.4)

C2ðtiÞ ¼
1

o
fyi � a½ðD1O� D2dÞ sinOti þ ðD1d þ D2OÞ cosOti�g; (A.5)
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Fig. 17. Phase planes for motions of P4ð36Þ32ð15Þ1: (a) symmetric, O ¼ 1:8; Oti � 5:6161; yi � 5:1735; (b) asymmetric,

O ¼ 1:6; Oti � 5:5191; yi � 4:8633; (c) asymmetric, O ¼ 1:6; Oti � 5:7805; yi � 5:4937; phase planes for motions of

P4ð36Þ232ð15Þ21; (d) symmetric, O ¼ 1:2; Oti � 5:5008; yi � 4:8697; (e) asymmetric, O ¼ 1:115; Oti � 5:4467; yi � 4:6830;
and (f) asymmetric, O ¼ 1:115; Oti � 5:6017; yi � 5:2969; d ¼ 0:5; c ¼ 100; E ¼ 1:0; a ¼ 200:

A.C.J. Luo / Journal of Sound and Vibration 283 (2005) 723–748746
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and

xi ¼ �E; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c � d2

p
; D1 ¼

c � O2

ðc � O2Þ
2
þ ð2dOÞ2

; D2 ¼
2dO

ðc � O2Þ
2
þ ð2dOÞ2

: (A.6)

Note that xi ¼ E for Region I and xi ¼ �E for Region III.
For Region II, the form of Eq. (1) reduces to

€x þ 2d _x ¼ a cosOt: (A.7)

Again, an initial condition ðt; x; _xÞ ¼ ðti; xi; yiÞ is assumed and the general solution to Eq. (A.7) is

xðtÞ ¼ C3ðtiÞe
�2dðt�tiÞ þ C4ðtiÞ þ aðD3 cosOt þ D4 sinOtÞ; (A.8)

_xðtÞ ¼ �2dC3ðtiÞe
�2dðt�tiÞ � aOðD3 sinOt � D4 cosOtÞ: (A.9)

Using the initial condition in Eqs. (A.8) and (A.9) leads to the two new constants C3ðtiÞ and C4ðtiÞ:

C3ðtiÞ ¼ �
1

2d
½yi þ aOðD3 sinOti � D4 cosOtiÞ�; (A.10)

C4ðtiÞ ¼
1

2d
yi þ 2dxi �

a

O
sinOti

� �
; (A.11)

and

D3 ¼
�1

O2 þ 4d2
; D4 ¼

2d

OðO2 þ 4d2
Þ
: (A.12)

For starting points at x ¼ �E; xi ¼ �E accordingly.
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[1] H. Poincaré, Les Methods Nouvelles de la Mecanique Celeste, vol. 1, Gauthier-Villars, Paris, 1892.

[2] C.D. Birkhoff, On the periodic motions of dynamical systems, Acta Mathematica 50 (1927) 359–379.

[3] E.A. Corddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

[4] M. Henon, C. Heiles, The applicability of the third integral motion: some numerical experiments, Astronomical

Journal 69 (1964) 73–79.

[5] Y. Ueda, Steady motion exhibited by Duffing’s equation: a picture book of regular and chaotic motion, in:

P.J. Holmes (Ed.), New Approaches to Nonlinear Problems in Dynamics, SIAM, Philadelphia, 1980, pp. 311–322.

[6] S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator, Journal of Sound and Vibration 90 (1)

(1983) 121–155.

[7] A.B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and

Vibration 145 (1991) 279–297.

[8] M. Kleczka, E. Kreuzer, W. Schiehlen, Local and global stability of a piecewise linear oscillator, Philosophical

Transactions of the Royal Society of London: Physical Sciences and Engineering, Nonlinear Dynamics of Engineering

Systems 338 (1992) 533–546.

[9] S. Foale, Analytical determination of bifurcations in an impact oscillators, Philosophical Transactions of the Royal

Society of London 347 (1994) 353–364.

[10] A.C.J. Luo, Analytical Modeling of Bifurcations, Chaos and Multifactals in Nonlinear Dynamics, Ph.D.

Dissertation, University of Manitoba, Manitoba, Canada, 1995.



ARTICLE IN PRESS

A.C.J. Luo / Journal of Sound and Vibration 283 (2005) 723–748748
[11] R.P.S. Han, A.C.J. Luo, W. Deng, Chaotic motion of a horizontal impact pair, Journal of Sound and Vibration 181

(1995) 231–250.

[12] A.C.J. Luo, R.P.S. Han, Dynamics of a bouncing ball with a periodic vibrating table revisited, Nonlinear Dynamics

10 (1996) 1–18.

[13] A.C.J. Luo, An unsymmetrical motion in a horizontal impact oscillator, Journal of Vibrations and Acoustics 124

(2002) 420–426.

[14] G.X. Li, R.H. Rand, F.C. Moon, Bifurcation and chaos in a forced zero-stiffness impact oscillator, International

Journal of Nonlinear Mechanics 25 (4) (1990) 414–432.

[15] S. Menon, A.C.J. Luo, An analytical prediction of the global period-1 motion in a periodically forced, piecewise

linear system, International Journal of Bifurcation and Chaos, in press.

[16] J.P.D. Hartog, S.J. Mikina, Forced vibrations with non-linear spring constants, Journal of Applied Mechanics 58

(1932) 157–164.

[17] S. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York, 1937.

[18] S. Natsiavas, Periodic response and stability of oscillators with symmetric trilinear restoring force, Journal of

Sound and Vibration 134 (2) (1989) 315–331.

[19] S. Natsiavas, G. Verros, Dynamics of oscillators with strongly nonlinear asymmetric damping, Nonlinear

Dynamics 20 (1999) 221–246.

[20] S. Theodossiades, S. Natsiavas, Non-linear dynamics of gear-pair systems with periodic stiffness and backlash,

Journal of Sound and Vibration 229 (2) (2000) 287–310.


	The mapping dynamics of periodic motions for a three-piecewise linear system under a periodic excitation
	Introduction
	Switching sets and generic mappings
	Mapping structures
	Local periodic motion
	Global periodic motion
	Mixed periodic motion

	Stability and bifurcation
	Illustrations
	Numerical simulations
	Conclusion
	Basic solutions
	References


