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Abstract

In this paper, the mapping dynamics of periodic motions for a three-piecewise linear system
under a periodic excitation is developed, and the mapping structures for specified periodic
motions are constructed. Based on the mapping structures, an analytical prediction of all possible,
stable and unstable periodic motions is given. The symmetry for the stable, asymmetrical, periodic motions
of such a system is observed. However, the unstable periodic motions do not have such symmetry. The
methodology presented in this paper is applicable to other non-smooth systems such as friction-induced
vibration, impact oscillator and power control systems. In addition, the mapping dynamics provides a
useful and efficient tool for the co-existence of periodic motions and/or chaotic motions in nonlinear
dynamical systems.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The mapping dynamics of periodic motions for any dynamical system is to develop the
mapping relationships from which the expected periodic motions can be analytically predicted.
This investigation will avoid passive digital simulations of dynamics responses in nonlinear
dynamical systems, and also this investigation will provide a possibility to obtain all stable and
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unstable periodic motions existing in dynamical systems rather than only one of stable
motions given by numerical simulations. The mapping dynamics herein will provide a useful and
efficient tool for us to determine the co-existence of periodic motions and/or chaos. The mapping
has been extensively used for investigation of complicated motions in nonlinear systems since
Poincareé [1] introduced the mapping concept for determination of periodic responses in nonlinear
dynamics. Such a mapping is termed the Poincaré mapping. The mapping sets accompanying the
Poincaré mapping is termed the Poincaré mapping section or surface. For an N-dimensional
autonomous system, the Poincaré mapping section is selected as an (N — 1)-dimensional surface
transversal to the closed orbit. When a periodically driven, N-dimensional continuous system is
investigated, the Poincaré mapping section is often constructed by an N-dimensional set of
responses in phase space. However, for a periodically driven, N-dimensional discontinuous system,
discontinuous surfaces are a candidate of the Poincaré mapping section. In beginning of the last
century, one used the Poincaré mapping method for periodic motion and stability [2,3]. Since the
middle of last century, the Poincaré mapping has been used to demonstrate chaotic motions (e.g.,
Refs. [4,5]).

In 1983, Shaw and Holmes [6] investigated a piecewise linear system with a single discontinuity
through the Poincaré mapping and numerically predicted chaotic motion. In 1991, Nordmark [7]
used the mapping technique to investigate non-periodic motion caused by the grazing bifurcation.
In 1992 Kleczka et al. [8] investigated the periodic motion and bifurcations of piecewise linear
oscillator motion, and numerically observed the grazing motion. Foale [9] used Nordmark’s idea
about the grazing bifurcation to analytically determine the bifurcation in the impact oscillator in
1994. To determine complex periodic motions, in 1995 Luo [10] initialized the concept of mapping
dynamics for discontinuous systems and applied it to impacting oscillators and a ball bouncing on
a vibrating table (also see Refs. [11,12]). In 2002, Luo [13] discovered the two asymmetric period-1
motions by introduction of a time interval between two impacts, and one of the two asymmetric
motions for such an impact system were observed through a numerical investigation in Ref. [14].
In 2003, Menon and Luo [15] used the concept of mapping dynamics to construct mapping
structures of a piecewise linear system with a dead-zone restoring force. In addition, without the
mapping techniques, the following contributions to the piecewise linear system problem should be
mentioned. The early study of a piecewise linear system without damping was completed by
Hartog and Mikina [16] in 1932 and a closed-form solution for symmetric and periodic motion
was obtained. Timoshenko [17] discussed undamped piecewise linear systems in 1937. In 1989,
Natsiavas [18] identified the responses of a system with tri-linear springs with a time-incremental
method, and by use of a similar approach, the dynamics of oscillators with strongly nonlinear
asymmetric damping was investigated [19]. In 2000, Theodossiades and Natsiavas [20] discussed
the modeling of gear-pair vibration as a piecewise linear problem, and the periodic solutions and
stability for such a system were discussed.

In this paper, the mapping dynamics of periodic motion will be investigated for a
better understanding of the complex periodic motions in a three-piecewise linear system
under a periodic excitation, and mapping structures for specified periodic motions will be
developed. An analytical prediction of all possible, stable and unstable periodic motions will be
given from those mapping structures. The local stability and bifurcation will be obtained through
eigenvalue analysis. Numerical simulations are presented for demonstration of the symmetry of
periodic motions.
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2. Switching sets and generic mappings

Consider a periodically excited, piecewise linear system
X+ 2dx + k(x) = acos Q2¢, (1

where x = dx/dz. The parameters Q and « are excitation frequency and amplitude, respectively.
The restoring force is

cx—e forx=E,
k(x)=< 0 for — E<x<E, 2)
cx+e forx< —E,

with E = e/c. In the foregoing system, there are three linear regions of the restoring force (Region
I: x> E, Region II: —E<x<FE and Region III: x< — FE). The solution for each region can be
easily obtained, as listed in Appendix A.

For description of motion in Eq. (1), two switching sections (or sets) are defined as

SV ={(t,xny)lxi=E,x; =y} and X7 ={(t;,x;,y)|lxi = —E, % = y;}. 3)
The two sets are decomposed into
ST=XTUXfU{1;,E,0) and X" =X UXZU{y,—E,0}, 4)
where four subsets are defined as

T =A{(ti,xiy)lxi = E,x; = y;>0} and 2T = {(t;, x;,y)|x; = E, X; = y; <0}, W)

ZI = {(bei:yi)lxi = _E: )‘Ci = y1>0} and Z: = {([l': xiayi)lxi = —E,)'C,' = y1<0} (6)

The points {z;, E,0} and {¢;, —E, 0} strongly dependent on the external force direction are singular.
From four subsets, six basic mappings are

P Xt =3t Pyt 3T, Pyt 3,

Py:3X, —> X, Ps:Xf X, Pg:X]— 2. (7)
In Fig. 1, the switching planes and basic mappings are sketched. The mapping P; : (¢, E, y;) —
(ti+1, E, y;;1) indicates that the initial and final states are (7, x, X)i50 = (%, £, ;) and (£, X, X)gpa =

(ti+1, E,y;11) In Region I, respectively. For ;>0 and y, <0, two governing equations for
mapping P; are obtained from Egs. (A.2) and (A.3) with x; = E, i.e.,

[Ci(t:) cos ax(tisr — 1) + Calts, y;) sin o(tirr — t;)]e™ ™17 4 a(Dy cos Q141 + Dasin Qti41) = 0,
Vie1 HCi1(t)d — Ca(t;, y)w]cos w(tiyr — 1) + [Ci(ti)w 4+ Ca(ti, y)d] sin iy — ti)}e_d(t’Jr]_tf)
+ af2(D sin Qti 1 — Dy cos .Qli_H) =0. ®)
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RegionIll 3~ Region II >t Region I

Fig. 1. Switching sections and generic mappings in phase plane.

Similarly, the mapping P, : (¢, E,y;) — (fiy1,—E, y;; 1) gives the initial and final states (7, E, y;)
and (ti41,—E,y;;;) in Region II, respectively. The corresponding governing equations for the
mapping P, are obtained from Eqs. (A.7) and (A.8) plus x; = E for ;<0 and y,,; <0, ie.,

Cs(ti, y)e 24m=1 4 Cy(t;, ;) + a(D3 cos Qtiy1 + Dasin Q1) + 2E = 0,
Vir1 +2dCs(t;, y)e 21170 4 aQ(Dy sin Qt;y — Dy cos Q1) = 0. 9)

The motion of the system enters Region III after time ¢;, and returns back to the boundary of
Regions II and III until time ¢, ;. Such a motion is measured through the mapping Ps. Note that for
;<0 and y;, >0, Egs. (A.2) and (A.3) with x; = —F give the governing equations as in Eq. (8).

The mapping P, brings the motion from the boundary of Regions III and II at time ¢;
to the boundary of Regions II and I at time ¢;; ;. The governing equations for such a mapping
are determined by Eqgs. (A.7) and (A.8) with (#,—FE,y;) and (fi1,E,y; ) for y;>0 and
Viy1>0, e,

Cs(ti, y)e Wm0 4 Cy(t;, ;) + a(D3 cos Qtiy1 + Dasin Q1) — 2E = 0,
Viet + 2dCs(t;, y)e 2= 1 qQ(Dy sin Q141 — Dycos Qt;41) = 0. (10)
The mapping Ps brings the motion from the boundary of Regions I and II to the boundary of
Regions I and II at time #;; 1. The governing equations for such a mapping are determined by Egs.
(A.7) and (A.8) with (#;, E, y;) and (#;11, E, y;;,) for y;<0 and y;,; >0, ie.,
C3(t, yy)e 2" 1 Cy(ti, y;) + a(D3 08 Qi + Dasin Qi) =0,
Vip1 +2dCs(ti, y;)e 241710 4 aQ(Dy sin Qt; — Dy cos Qtiy1) = 0. (11)
The mapping Ps maps the motion from the boundary of Regions II and III to the boundary of
Regions II and III at time ¢;,1. The governing equations for such a mapping are the same as in
Eq. (11) with y;>0 and y, ; <0. From the above mapping definitions, mappings Pi, P3, Ps and Ps

are termed the local mapping, and mappings P, and P4 are termed the global mapping (or the
transfer mapping).
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3. Mapping structures

For simplicity, the following notation for mapping is introduced:
Py, =Py oPy0---0P,, (12)

where P, € {Pj|j=1,2,...,6} and n; = {1,2,...,6}. Note that the rotation of the mapping of
periodic motion in order gives the same motion (i.e., Pp,py-nis Pry-omgnys - - « » Prgny -y, )» and only the
selected Poincaré mapping section is different. The motion of the m-time repeating of mapping
Py, 18 defined as

0 J— J—
PZI"Z"'”A’ = P(nlnz---nk)m = P(nlnz ce nk) e (n1n2 e nk)

m

= (PyoPyo0---0oPy)o---o(PyoPyo0---0P,). (13)
m:s,ets

To extend this concept to the local mapping, define

P{s = Pgsy=(PioPs)o---o(ProPs) and P = Puey = (P30Ps)o---0o(P3oPs). (14)

m=sets m=sets

For the special combination of global and local mapping, introduce a mapping structure

— i
Popyeumyn, = Py 0 Pyo---0 Pn,n; o---0Py

=Py oP,0---0(Pyo0Py)o---0(PyoPy)o---0P,. (15)

m=sets

From the definition, the motion of Eq. (1) can be very easily labeled through the mapping
structure accordingly.

3.1. Local periodic motion

Since there are two displacement constraints, there are many possible periodic
motion models. Consider local periodic motions near two displacement constraints
first, namely, no transfer mapping is used to map the switching planes from one to
another. To construct the Poincaré mapping for the motion from X7 to X7, the
commutative diagram for period-1 and period-k motion is illustrated in Figs. 2(a)
and (b), respectively. The corresponding physical motions near the displacement
constraint at x = E are presented in Figs. 2(c) and (d). From the mapping commutative diagram,
the period-1 and period-k motions possess the Poincaré mapping P : X1 — X% with the following
mapping relations:

Ps; = Pso Py and Plgl = P(Sl)' . (51) = (P5 OP])O- ++ 0 (P5 OP]),
— final pair initial pair (16)

g

k-pairs

k
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Fig. 2. Local periodic motion near the displacement at x = E: mapping commutative diagrams for (a) period-1 motion
and (b) period-k motion; physical motion for (c) period-1 motion and (d) period-k motion.

where P = Ps; and P = P’S‘I. Once the period-1 motion has period doubling, the integer k becomes
2. Therefore, the second equation in Eq. (16) includes all possible periodic motion for the different
integer k. Similarly, if the switch plane 27 is chosen as the Poincaré mapping section, the Poincaré
mapping P: 2T — 3T becomes

P15=P10P5 and PIFSEP(ls)(IS)z(PIOPS)OO(PIOPS)
—_——

v final pair initial pair (17)

k=-pairs

In a similar manner, the Poincaré mapping for the periodic motion near the displacement constant
x=—FE is defined as Pz : 2~ — X~ or Pg: 2~ — X~. For such a Poincaré mapping, the
mapping commutative diagram and physical motion in phase planes are presented in Fig. 3. The
Poincaré mapping is given by

_ . k =
P63—P6OP3 and P63_P(63)(63) (P60P3)O O(P@OP}),

v final pair initial pair (18)

k—pairs

or
Pyw=P30P, and Pi =Pgg)...36) = (P3oPe)o--o(P3oPs).
(36)---(36) — } il el

p final pair initial pair (19)
K

k—pairs

The local periodic motion can be determined through these mapping relationships.
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Fig. 3. Local periodic motion near the displacement at x = —E: mapping commutative diagrams for (a) period-1
motion and (b) period-k motion; physical motion for (c) period-1 motion and (d) period-k motion.

3.2. Global periodic motion

The global periodic motion is the motion that passes through the two displacement constraints.
With varying system parameters, the motion described by Ps and Pg will convert to the motion
determined by P, and P4. The local periodic motion becomes a global motion through a grazing
bifurcation or catastrophe with the Jacobian matrix singularity, and the global motion connects
the two displacement constraints. Consider the simplest global periodic motion with a Poincaré
mapping P41 : 27 — X7, and the mapping commutative diagram and physical model is given in
Fig. 4. The Poincaré mapping is expressed by

P4321=P4OP3OP20P1. (20)

Once the period doubling of periodic motion in Eq. (20) occurs, the Poincaré mapping for period-
2K motion becomes

zk
Py :,P40P3OP20P1IO-~-OIP4OP3onoP]I.
final set initial set (21)

v~

2K _sets

For the generalized Poincaré mapping for any period-k motion of mapping Py4331, we have

Pljvl =PsoP3;0PyoPio---0oPsoP30PyoP;.
i L ] L ]
final sct initial set (22)

(.

e

k—scts
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Fig. 4. The simplest global periodic motion: mapping commutative diagrams for (a) period-1 motion and (b) period-k
motion; physical motion for (c) period-1 motion and (d) period-k motion.

3.3. Mixed periodic motion

The global periodic motion is not always symmetric, and with changing system parameters, the
aforementioned local motions will be involved in the asymmetric, global motion to form a new
periodic motion that is termed the mixed periodic motion. Therefore, the mixed periodic motion is
combined with the local and global motions. Two basic models for such a mixed motion are
presented through P: X% — X7, as shown in Fig. 5. The mapping structures for the simplest
mixed periodic motion is expressed by

P432(15)] = P4 [¢) P3 [¢) Pg [¢) P] [¢) P5 OP], or P4(36)32] = P4 o) P3 o) P6 OP3 o) Pz ] Pl .
— —
local local (23)

global global

The two mixed motions are directly caused by the two different asymmetric motions of the global
motion in Eq. (20). For the motion generated by the period-doubling bifurcation of mapping in
Eq. (23), the mapping structures are the same as in Eq. (21). Namely, we have Pﬁ;2(15)1 =
P432(15)1 O:++-0 P432(15)1 and P421(36)321 = P4(36)321 0:+--0 P4(36)321. Slmllarly, if the grazing or
catastrophe with Jacobian matrix singularity exists, a new, mixed periodic motion will be
generated from the two asymmetrical motions determined by mappings Pa3ais)y1 and Paze)21 in
Eq. (23). The mapping structure of the new periodic motion is described by

P4(3())32('15)1 = P40_P36 OP3 O_P2 OP15 O.P] == P4OP3 OP6OP3 OP2 O_P] OP5OP1,
local local (24)

global

N

which is illustrated in Fig. 6.



A.C.J. Luo | Journal of Sound and Vibration 283 (2005) 723-748 731

5-
P P e
| aoe) 7
= Pisasy s s Py -
: (b)
x b
z s . 2
\\\;: \
\\
\_\ ) P
\ | Bl 1 |
c\\\b ?\\ -f:\étx\ N \\Q\\i§\\§\\:§
%§§§f;§§§§§§§§§g
<\\\\\ \ e
Region Il - Region IT '  Regionl Regionlll - Region IT s Regiml

(c) (@)

Fig. 5. The two asymmetric, global periodic motion: mapping commutative diagrams for (a) right- and (b) left-
asymmetrical motions; physical motion for (c) right- and (d) left-asymmetrical motions.
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Fig. 6. The global periodic motion with two local cyclic motions: (a) mapping commutative diagram and (b) physical
motion.

To generalize the above symmetrical and asymmetrical periodic motions, we have

P4(36)k232(15)k11 = P4OP§%OP3 OP20P11{; OPl;
= P4OIP3OP60---OP3 OP(,IOP3OP20IP1 OP50---OP1 OPSIOP].

ky=sct(local) ky=sct(local)

(25)

~
global
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Fig. 7. A global periodic motion with k,-cycle (left) and k,-cycle (right) local motions: (a) mapping commutative
diagram and (b) physical motion.

As ki = k;, the foregoing mapping gives the motion possessing a symmetrical mapping. For
ki #k,, the motion having an asymmetrical mapping structure is obtained. The motion transition
between the symmetrical and asymmetrical mappings, caused by grazing, will not be discussed
herein, but the corresponding results will be presented in another paper. The mapping structure
for Eq. (25) is presented in Fig. 7. The further generalized mapping structure for the complex,
periodic motion is expressed by

P 4(36)F2132(15)F1n 1...4(36)F21 32(15)%11 1
= Pio P2 oPsoPro P\l oPio-- o Pyo P2 o PyoPyo P o Py
:P4olP3oP(,o---oP3 oP(,loP3oP20IPI oPso---0P oP5loP1

kan=sct(local) kp=sct(local)

, (26)
n-global
o---oP4oIP3oP6o---oP3oPﬁloP3oP20|Pl oPso---0P oP5loP|.
ka1-set(local) k11-sct(local)
first-global

4. Stability and bifurcation

The periodic motion can be obtained through a specific Poincaré mapping given by one of the
combined mappings developed in the previous section. In other words, the period-1 motion is
determined by the fixed point of the Poincar¢ mapping for a given period 7 =2n/Q (i.e.,

. T
mathematically, Pyaeyonsnisynt ey 3aasyn 1 Xi = Xi+4n+2:;:l(kzm+k1m)’ where x; = (#,y;) ). Once

the initial condition (7}, E,y}) for the periodic motion is obtained, the switching times and
velocities for all the switching planes are determined accordingly. The stability and bifurcation for
period-1 motion can be determined through the corresponding Jacobian matrix of the Poincaré
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mapping. From Eq. (26), the Jacobian matrix is computed by the chain rule, i.e.,

DP = DP4(36)"2"32(15)""1l---4(36)"2|32(15)k|1l = H(DP4'DP§Z'DP3'DPZ'DPIF.]S"'DPI)
i=1

n kz,' kll
=] (DP4. [ [ ©Ps-DPe)-DPs-DP,- T | (DPI-DPS)-DP1>

i=1 =1 =1
= DP4-IDP3-DP6 ----- DP3-DP(,I-DP3-DP2-IDP1-DP5 ----- DPl-DP5I-DP1 27)
ka,=set(local) kyn,-set(local)
n-global
..... DPy- DP;-DPs. - - --DP3-DPg -DP3-DPy- DP,.DPs. - - - -Py-Ps .P; .
ko1 -set(local) ky1-set(local)

/

first-global
From mappings in Section 2, two unknowns (fi41,);,;) can be expressed through the initial
conditions, i.e., ti11 = ti41(%, ;) and y, .| = y;,1(, y;). The linearization of mappings P; and P3 in
the neighborhood of the solution of periodic motion (¢, y}) generates the Jacobian matrices:

op [M]
J ati, ;) (177t

LV
yiwcosa(tiyg — ;) + Nisina(tipr — t;)  —sino(tiy — ;)
—d(tiy1—1;)
e
= ﬁ O(YiNit1 — yip Ni) cos o(tipr — ;) WY;q1 COSO(tit1 — 1) (28)
i+1 ) )
+(Ni+1Ni + wzyiyi+1) sin w(ti-H - ti) —Nit181n w(tH-l - ti) (RN

The linearization of mappings P, P4, Ps and Ps in the neighborhood of (z},y}) generates the
Jacobian matrices for

DP, — [6([,~+1 ) J’i+1)]
! a([b yl) (5.t

HRRRY)
e*Zd(tHl*fi)
2yid
2dy; + acos Qt(e* =1 — 1) 1 — e2dlmi=1)
, (29
2 =P, 1acos Qti1 — PiacosQtiyy  acos Qi — Piye?dtini=t) )
P70 4107 0]

where
N;=acos(Qt;) —dy; and P;= acos(Qt;) — 2dy;. (30)

The eigenvalues of a fixed point for the periodic motion mapping is expressed through the trace
(Tr(DP)) and determinant (Det(DP)) of the Jacobian matrix DP, i.c.,

Tr(DP) V[Tr(DP))> — 4Det(DP)
2 2 '

(1)

)\,]’2 =
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If [Tr(DP)]> <4Det(DP), Eq. (31) is expressed by
J12 =Re(l) £jIm(2), withj=+—1, (32)

where Re(1) = Tr(DP)/2, and Im(1) = \/4Det(DP) — [Tr(DP))? /2.

If two eigenvalues lie inside the unit circle, then the period-1 motion pertaining to
the fixed point of the Poincaré mapping is stable, while if one of them lies outside
the unit circle, the periodic motion is unstable. Namely, the stable periodic motion requires the
eigenvalues to be

<1, i=1,2. (33)

When this condition is not satisfied, the periodic motion is unstable. For complex eigenvalues
|212] <1, the periodic motion is a stable focus, while for |4;,|> 1 the periodic motion becomes an
unstable focus. If |1 o 2| = 1 with complex numbers, namely,

Det(DP) = 1, (34)

the Neimark bifurcation occurs. For two eigenvalues being real, the stable-node periodic motion
requires max |4;| <1, i = 1,2 and the unstable node (or saddle) one requires |4;|>1, i =1 or 2.
The saddle-node of the first kind is as A4;,>1, i = 1 or 2, and the saddle-node of the second kind
needs 4;< — 1, i = 1 or 2. If one of the two eigenvalues is —1 (i.e., 41or 2) = —1) and the other one
is inside the unit cycle, the period-doubling bifurcation occurs. Further, the period-doubling
bifurcation condition is

Tt(DP) + Det(DP) + 1 = 0. (35)

If one of the two eigenvalues is + 1 (i.e., Aior 2) = +1) and the second one is inside the unit cycle,
the first saddle-node bifurcation occurs. Similarly, the corresponding bifurcation condition is

Det(DP) + 1 = Tr(DP). (36)

For the grazing of periodic motion, one of the eigenvalues becomes infinity since the Jacobian
matrix is singular.

5. Illustrations

From mapping structures of periodic motions, the switching sets for a specific regular
motion can be determined through solving a set of nonlinear equations. For instance,
fpr a periodic motion with a mapping structqre .P4(36)k2n32(15)k]”1.”4(36)}:2132(15)1\»11l
(i.e., P4(36)k2”32(15)k1n1.“4(36)1{2132(15)@1 X = X), a set of vector equations is as

f(l)(xi+1 ’ Xi) = 05

f(S)(Xf+27Xi+1) = 05

@) , , _
f <Xi+4n+2zm_] (klersz)’ Xi+4n+22m:l (klm“"kZm)* 1) - O’ (37)
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where %) = (f(”"),fg”"))T 1Ts relative to the; governing equations of’mapping Pnj.(ni.e. {L,2,.. -.,.6})
and x; = (¢, X;) = (t,y;) . For the period-1 motion per N-periods, the periodicity condition
requires

T T
_ 2N7
Xivant23 ko) = X0 0T {liani™ ieany Vieans23 " ity ) = \ T g0 Yi)

(38)

Solving Eqgs. (37) and (38) generates the switching sets for periodic motion.

Since the spring constant is zero in Region II, the local periodic motion near the switching
planes cannot be obtained. Therefore, consider a periodic motion relative to mapping Py3o; first
and a set of system parameters (d = 0.5,¢ = 100, E = 1.0,a = 20, N = 1) is used, and these system
parameters will be used for all numerical illustrations. The switching phases and velocities varying
with excitation frequency are illustrated in Fig. 8. The circular symbols denote bifurcation points.
The thin and thick solid curves represent the stable symmetrical and asymmetric motions,
respectively. The dashed and dash—dot curves denote the unstable symmetrical and asymmetrical
motions. The switching phases and velocities for the entire range of excitation frequency are
plotted in Figs. 8(a) and (b). The complicated parts of the solutions for switching phases and
velocities are zoomed in Figs. 8(c) and (d). The local stability conditions are determined through
the eigenvalues of the Jocabian matrix in Eq. (27), as shown in Fig. 9. The disappearance grazing
of the symmetric motion occurs at Qi) ~ 7.39 and Qcr45) ~ 0.23. In the range of Q € (3.38,7.34),
the solution of symmetric period-1 motion is stable. For Q € (7.34,7.39) and Q € (0.23,3.38), the
symmetrical period-1 motion is unstable. At Qi) & 7.34 and Q3 ~ 3.38, the saddle
bifurcation of the first kind occurs for the symmetrical period-1 motion. In the range of Q €
(0.23,3.30), two asymmetrical period-1 motions exist. At Q) = 3.30, the solutions for
symmetrical and asymmetrical motions merge together. The stable, asymmetrical motion is in
Q € (2.98,3.22). The unstable solutions for the two asymmetrical period-1 motions are in Q €
(0.24,2.98) and Q € (3.22,3.30). At Qo) &~ 3.234, the saddle-node bifurcation of the first kind
occurs when the asymmetrical period-1 motion takes place. Furthermore, the period-doubling
bifurcation of the asymmetrical period-1 motion occurs at excitation frequency Q3. =~ 2.98.
Note that subscripts “a’ and ‘s’ denote the asymmetrical and symmetrical motions.

During grazing of the two asymmetric motions of Pys3;;, the motion with the symmetrical
mapping structures switches into the right- and left-asymmetrical motions related to mappings
P435)1 and Pyaepza1, respectively. The mapping structures are qualitatively described in Fig. 5.
The switching phases and velocities varying with excitation frequency for the two motions are
plotted with parameters (d = 0.5,¢ =100, E = 1.0,a =20, N = 1), as shown in Fig. 10. The
circular symbols denote bifurcation points. The thin and thick solid curves represent the stable
motions for mappings Pa3x15)1 and Pye)321, respectively. The dashed and dash—dot curves denote
the corresponding, unstable motions. The stability conditions are presented through the
eigenvalue analysis, as illustrated in Fig. 11. For the two motions, one of the two eigenvalues
approaches infinity at Q. ~ 2.863 and Q.4 ~ 1.529. It indicates that no motion relative to the
two mappings exists for Q< Q.4 and Q> Q.. The disappearance grazing of the two motions
occurs at Q1 ~ 2.863 and Q.4 ~ 2.863. At Q.o ~ 2.858, the saddle-node bifurcation of the first
kind occurs. For excitation frequency Q € (2.858,2.863), the unstable motion is the saddle node of
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the first kind, and the stable motion is in Q € (2.766, 2.858). At Q.3 ~ 2.766, the period-doubling
bifurcation (or the saddle node of the second kind) happens. For an excitation frequency near the
period-doubling bifurcation point (2 <£3), motions of mapping Pa3(15)1 © Paza(15)1 and Paze)321 ©
P436)321 can be obtained. The unstable motions of mappings Ps3o(15)1 and Pa3e)z2r are the saddle
nodes of the second kind in the range Q € (1.592,2.766). Once the gazing of Pa3y15)1 and Paae)32i
takes place, the motion of Ps36)32(15)1 appears, as described qualitatively in Fig. 6. The mapping
structure for this motion is symmetrical. Thus, the symmetrical and asymmetrical motions for
such a mapping structure exist.

The switching phases and velocities of the motion of Pa3e)20151 for the entire range of
excitation frequency are plotted in Fig. 12. The lines and symbols have meanings similar to the
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ones in Fig. 8. The corresponding eigenvalue analysis for the motions are presented in Fig. 13 for
local stability and bifurcation conditions. The solution structure for this motion is similar
to the motion of P43;. For the symmetrical motion of Ps36)32015)1, the critical values for
disappearance gazing are Qcr(5) ~ 1.889 and Q4 &~ 0.176. The saddle-node bifurcation points of
the first kind are Qo) ~ 1.88 and Q.3(5) ~ 1.706. For the asymmetrical motion of P436)3215)1, the
critical values for the disappearance grazing are Qci(,) ~ 1.65 and Qc4,) ~ 0.788, and the saddle-
node bifurcation points of the first and second kinds are Qo) =~ 1.614 and Q3 ~ 1.592,
respectively.

To demonstrate how to determine motions relative to a complicated mapping structure, the
motion of mapping Pj;423,5p is presented in Fig. 14 with the same parameter as above. The
lines and symbols have meanings similar to the ones in Fig. 8. Similarly, for the symmetrical
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motion of Pysepa0s710 the critical values for disappearance gazing are Q1) &~ 1.231 and Q45 ~
0.129. The saddle-node bifurcation points of the first kind are Qo) ~ 1.228 and Q35 ~ 1.181.
For the two asymmetrical motions of P57t the critical values for the disappearance
grazing are Qi) ~ 1.135 and Q) &~ 0.753, and the saddle-node bifurcation points of the first
and second kinds are Q¢ ~ 1.117 and Q3 ~ 1.113, respectively.

From the above illustrations of periodic motion with mapping Py3ey32(15y71, the solutions for
the two asymmetric motions have the following relations:

|m0d(Qt{+j? 2m) — mOd(Qffimod(zm+2+/,4m+4)» 2n)| ==,

y{+j = _yll-I}—mod(2m+2+j,4m+4)5 forj = {Oa 13 R 4m + 3}’ (39)
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where mod(e, e) is the modulus function. For the periodic motion of mapping Py;¢m+i35p = Pr
and P4(36)m32(l syr] = Py;, the solution relationship becomes

or

! I .
Vit = —Vitmod@mtdtjdmiey 1orj=1{0,1,...,4m+ 5},

II I
|m0d(‘Qti+j’ 277") - mOd(‘QZi+mod(2m+2+j,4m+6)’ 27‘C)| =T,

I Vi .
Vit = —Vitmod@mi2tjamiey 100 j=1{0,1,...,4m+ 5}.

(40)

(41)
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6. Numerical simulations

From mapping structures, the switching velocity and phases at switching planes are
determined. The symmetrical structures of solutions are observed, as summarized
in Egs. (39)-(41). The motions can be simulated numerically through the differential
equation (1) with appropriate initial conditions selected from the switching sets
determined analytically for this problem, since the analytical expressions of solution
for motions in each region are developed. The numerical simulation can be carried
out by use of those analytical expressions. Herein, numerical simulations are based
on Egs. (A.2)(A.6) for the switching planes at (y;>0,x;=E) and (y;<0,x; = —E),
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and Eqgs. (A.8)-(A.12) for (y;<0,x; = E) and (y;>0, x; = —E), respectively. The initial conditions
are selected from the switching plane (7, y;) € 27 given analytically. For comparison, a set of
parameters (A =10, C=50, E=1, D=0.5, M =0.5) is used again. The computation
precision at switching planes is 10~'°. The input data for all numerical simulations are listed in
Table 1.

In Fig. 15, the motion relative to mapping Pa3»; is illustrated. The stable, symmetric, right-
asymmetric and left-asymmetric motions are arranged in Figs. 15(a)—(c), respectively. The shape
changes of motion in phase planes for such a symmetry are very clearly observed. The phase
trajectory in Fig. 15(b) turning 180° clockwise is identical to the phase trajectory in Fig. 15(c). The
two asymmetric motions are skew-symmetric, as in Eq. (39). In Figs. 15(d)—(f), the unstable
symmetric, right-asymmetric and left-asymmetric motions are presented. Once the symmetric
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Fig. 14. Switching phases and velocities varying with excitation frequency for periodic motion pertaining to mapping
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velocities. The circular symbols denote bifurcation points; d = 0.5, ¢ =100, E = 1.0, a =200; ———, stable
symmetric; == stable asymmetric; ———, unstable symmetric; — - — - — , unstable asymmetric.

motion loses its stability, the unstable motion may go to one of the closest, other stable motions or
chaotic motion, as shown in Fig. 15(d). For the wunstable asymmetrical motion,
the skew-symmetry property cannot hold any more, which is observed from Figs. 15(e)
and (f). The phase trajectories for mappings P43x15)1 and Py3¢)321 are illustrated in Fig. 16. For the
stable motions, the trajectories are skew-symmetric. The two solutions have a similar relation as in
Egs. (40) and (41). However, the corresponding unstable motions destroy the skew-symmetry
existing in the stable motions. In Fig. 17, the stable, symmetric, right-asymmetric and left-
asymmetric motions for Py3e)32s1 and P4(36)232(15)21 are demonstrated in Figs. 17(a)—~(c) and
(d)—(f), respectively, and the skew-symmetric structures for the asymmetrical motions are
observed.
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Table 1
Input data for numerical simulations (d = 0.5,¢ = 100, £ = 1.0,a =20,xg = E,N = 1)
Q Qty Yo Mapping Symmetry Stability
Fig. 15 (a) 4.8 5.8782 7.5617 Symmetric Stable
(b) 3.2 5.6830 5.5475 R-asymmetric
(o) 3.2 6.2195 5.7207 P31 L-asymmetric
(d) 2.5 6.0033 5.3625 Symmetric Unstable
(e) 2.5 5.3394 7.4599 R-asymmetric
® 2.5 5.3502 7.3412 L-asymmetric
Fig. 16 (a) 2.8 5.3225 4.6288 Pizois) R-asymmetric Stable
(b) 2.8 6.2502 7.2810 Puize)321 L-asymmetric
(o) 2.0 5.9064 5.0923 Pyysy R-asymmetric Unstable
(d) 2.0 6.0587 7.0792 P4(36)321 L-asymmetric
Fig. 17 (a) 1.8 5.6161 5.1735 Symmetric Stable
(b) 1.6 5.5191 4.8633 P4(36)32(15)1 R-asymmetric
(o) 1.6 5.7805 5.4937 L-asymmetric
(d) 1.2 5.5008 4.8697 Symmetric
(e) 1.115 5.6017 5.2969 Pyaepiasyi R-asymmetric
(f) 1.115 5.4467 4.6830 L-asymmetric

Note that the letters “R” and “L” denote the right and left switching planes. R- (or L-) asymmetric is the asymmetric
motion near the right (or left) switching plane.

7. Conclusion

In this paper, the mapping dynamics of periodic motions for a three-piecewise linear
system under a periodic excitation is developed, and the mapping structures for all the
possible periodic motions are developed. Based on the mapping structures, the analytical
prediction of stable and unstable periodic motions is given. No local periodic motion can be
obtained since the spring constant in Region II is equal to zero. The symmetry for the stable
asymmetrical periodic motions of such a system is observed. The methodology presented in this
paper is applicable to other non-smooth systems such as friction-induced vibration, impact
oscillator and power control systems.

Appendix A. Basic solutions

For Regions I and III, Eq. (1) becomes a linear equation of the form

X+ 2dx + ¢x = e + acos Qt. (A.1)
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Fig. 15. Phase planes for P43 (a) symmetrical motion, 2 = 4.8, Qt; ~ 5.8782, y; ~ 7.5617, (b) asymmetrical motion;
Q =32, Qt;~ 56830, y; =5.5475; (c) asymmetrical motion, Q = 3.2, Qf; ~ 6.2195, y, ~ 5.7207; (d) unstable
symmetrical motion, Q =25, Qt ~ 6.0033, y; ~ 5.3625; (e) unstable asymmetrical motion, Q=2.5, Qf ~
5.3394, y; ~ 7.4599; and (f) unstable asymmetrical motion, Q = 2.5, Q¢; ~ 5.3502, y; ~ 7.3412;d = 0.5, ¢ = 100, E =

1.0, a = 200.
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1.0, a = 200.
Assuming an initial condition (7, x, X) = (#;, x;, y;), the general solution of Eq. (A.1) is given by

x(¢) = [Ci(t;) cos (t — t;) + Ca(t;)sin w(r — 1)]e " + x; + a(D; cos Qt + D, sin Q1),  (A.2)
(1) = {[Ca(t) — Cr(t))d] cos ot — 1;) — [Cr(t)w + Ca(tp)d] sin ox(t — 1;)}e” 4"
— aQ(D; sin Qt — D, cos Q2t), (A3)
where two constants Ci(z;) and C,(¢;) are determined by the initial condition, i.e.,
(A.4)

Ci(t;)) = —a(D; sin Qt; + D, cos Qt;),

Calt) = 1y, — al(DQ — Dad)sin @, + (Dyd + Ds@)cos 2], (A.5)
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and
02
v=%E o=Ve-d D= % p- e NN
C — Cc —
(c — @ +(2dQ) (c— @ + (2dQ)

Note that x; = E for Region I and x; = —E for Region III.
For Region II, the form of Eq. (1) reduces to

X+ 2dx = acos Q. (A.7)
Again, an initial condition (, x, X) = (#;, x;, y;) is assumed and the general solution to Eq. (A.7) is
x(1) = Cs3(1;)e 201 4 Cy(t;) + a(D3 cos Qt + Dy sin Qf), (A.8)
x(f) = —2dC5(t;)e 2= — 4Q(Ds sin Q1 — Dy cos Q). (A.9)
Using the initial condition in Egs. (A.8) and (A.9) leads to the two new constants Cs(z;) and Cy(z;):
1
Ci(t) = — 2 v; + aQ(Dj3 sin Qt; — D4 cos Qt))], (A.10)
| a .
Cult) = 3 (yl- + 2dx; - 5sin in), (A.11)
and

-1 2d

Ds (A.12)

=———, Di=—75F——+.
QP rad> T @+ add)
For starting points at x = +F, x; = £F accordingly.
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